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We find that the Vollhardt and Wolfle self-consistent theory of Anderson localization makes simple predic-
tions for transport dynamics in unbounded one- and two-dimensional media. These predictions are derived and
explored and compared with direct numerical simulations.
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I. INTRODUCTION

While the steady-state intensity of waves in the Anderson-
localized regime has been studied extensively for many years
f1–3g, there has been relatively little attention paid to its
dynamics. At moderate distancesx from a steady-state source
in an unbounded medium, withx comparable to or larger
than a localization lengthj, standard theory predicts a
steady-state diffuse profile of the mean-square wave ampli-
tude s“energy”d that varies as exps−x/jd. This exponential
dependence is the prime signature of localization. At large
distances from a source, transport is effectively zero. Hence
follows the conclusion, valid in the thermodynamic limit,
that diffusion is zero in localizing systems and the under-
standing that the Anderson localization of single-electron
wave functions is a critical part of the metal-insulator tran-
sition in disordered conductorsf2g.

Classical wave systemsf4,5g are understood to localize as
well; there is no essential difference between the wave equa-
tion for noninteracting electrons and that for electromagnetic
or acoustic waves. The most significant differences are prac-
tical. One such is due to absorption: observation of an expo-
nential steady state exps−x/Ld does not permit the identifi-
cation L=j. Many measurements are restricted to
boundaries;x dependence is not available for study. In clas-
sical wave systems the prime signature of localization is
probably more clear in transport dynamics than it is in
steady-state transmissionf5g.

Theory for the dynamics of wave energy transport in lo-
calizing systems is relatively undeveloped, numerical simu-
lations f6–11g not withstanding. It is widely presumed that,
for sufficiently early times and short distancesse.g., Ref.
f12gd, transport away from an impulsive plane source can be
approximated by classical diffusion with a Boltzmann diffu-
sivity D0: E, exps−x2/4D0td /Î4pD0t. The manner in
which this spreading Gaussian evolves at late time intoE
, exps−x/jd is unclear. Recently Cheunget al. f13g and
Skipetrov and van Tiggelenf14g have applied the self-
consistent theory of Anderson localizationf15g to the prob-
lem of predicting transport dynamics in quasi-one-
dimensional semi-infinite structures. Here we report an
application of the same theory to unbounded systems, for

which the equations simplify. We find a closed-form expres-
sion describing the transport in one-dimensionals1Dd sys-
tems and simple integral expressions for transport in 2D sys-
tems and in an unbounded strip with periodic boundary
conditions. Closed-form asymptotic approximations for these
latter cases are found to be accurate. The results are com-
pared to those of numerical simulations in the literature.

We consider the self-consistent theory of Anderson local-
ization from f14,15g, where the diffusivityDsVd has a de-
pendence onsouterd frequencyV. Thus the Fourier transform
of the responseC to an impulsive addition of wave energy at
the origin is given by the solution to

f− DsVd¹2 + iVgCsV,D,r d = dsr d. s1d

The dynamic diffusivityDsVd is given as the solution of

1

DsVd
=

1

D0
+

2

a
CsV,D,r = 0d, s2d

whereD0 is the Boltzmann diffusivity, the effective diffusion
constant on a bare microphysical length scale comparable to
the mean free path. The parametera is related to the modal
density. Equationss1d and s2d are coupled. Equations2d de-
scribes how the diffusivity is renormalized by the backscat-
tered intensityCsr =0d. Implicit in Eq. s2d is the familiar
notion that localization is an extrapolation from weak local-
ization. That this is strictly speaking incorrect may be recog-
nized by considering the case of broken time-reversal invari-
ance where there is no weak localization, but modes are
localized. Nevertheless, the theory has enjoyed some
success.

In the next three sections we present solutions of Eqs.s1d
and s2d in three different systems: in unbounded one- and
two-dimensional structures and an in infinite strip of widthL
with periodic lateral boundary conditions that is intermediate
between one dimension and two dimensions and has been
studied numerically elsewhere. In all cases we then obtain
the corresponding prediction for the quasi-1D response
Esx,td, the response to an impulsive addition of wave energy
at all pointsx=0. Esx,td is given in terms of an integral that
is evaluated numerically. In Sec. V, this integral is found to
be accurately approximated at all pointsx.j by an
asymptotic expression. We emphasize the parameter regime
most relevant to transport in classical wave localized sys-
tems, distances of order 1 to several localization lengths, and
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modest time scales. The results are compared with certain
features observed in large-scale direct numerical simulations.

II. UNBOUNDED ONE-DIMENSIONAL SYSTEM

For an unbounded 1D system the functionCsrd can be
calculated by taking the Fourier transform over the wave
number q of both sides of Eq.s1d. The result isCsqd
=fDsVdq2+ iVg−1 and the dynamic diffusion coefficient
DsVd is expressed from Eq.s2d as

1

DsVd
=

1

D0
+

2

2pa
E

−`

+` dq

DsVdq2 + iV
. s3d

Without loss of generality we choose length and time units
such thatD0=a=1. The integral in Eq.s3d can be calculated
simply from the pole atq=Î−iV /DsVd and we rewrite Eq.
s3d as

DsVd = 1 −ÎDsVd
iV

, s4d

which has the solution

DsVd = 1 +
1

2iV
s1 −Î1 + 4iVd =

Î1 + 4iV − 1
Î1 + 4iV + 1

. s5d

Dynamic transportEsx,td is expressed as the inverse tem-
poral and spatial Fourier transforms of the functionC in
sV ,qd spaceCsV ,qd=fDsVdq2+ iVg−1:

Esx,td =
1

4p2 E expsiVtddVE
−`

+` expsiqxddq

DsVdq2 + iV

=
i

4p
E expfiVt + ixÎ− iV/DsVdg

Î− iDsVdV
dV, s6d

where the integration path overV is located in the lower
complex half-plane. We have takenx.0 without loss of gen-
erality, asEsxd=Es−xd. Using the solutions5d for DsVd the
integral s6d for energy can be rewritten as

Esx,td =
exps− xd

2p
E

−`−id

+`−id expfiVt − xsÎ1 + 4iV − 1d/2g
Î1 + 4iV − 1

dV,

s7d

with an arbitraryd.0. The integrand in Eq.s7d has a simple
pole atV=0 and a branch point atV= i /4. The pole governs
the late-time behaviorEsx,t=`d=exps−xd /2. The integral
s7d can be calculated analytically in the following manner.
Writing Esx,td=exps−xdIsx,td /2p, we find

] I

] x
= −

expsx/2d
2

E
−`−id

+`−id

expSiVt −
x

2
Î1 + 4iVDdV. s8d

The pole atV=0 has been eliminated. We deform the inte-
gration path from the lower to upper complex half-plane un-
til V= i /4. After the substitutionV→V+ i /4 and transforma-
tion of the integration path only over positive realV we
rewrite it as

] I

] x
= − expS x

2
−

t

4
DE

0

`

exps− xÎV/2dcossVt − xÎV/2ddV.

s9d

The substitutionV=2s2 simplifies the integral and we find
sf16g, p. 458d

] I

] x
= − 4 expS x

2
−

t

4
DE

0

`

exps− xsdcoss2ts2 − xsds ds

= −
x

2
Îp

t3
expS x

2
−

t

4
−

x2

4t
D . s10d

The energy distributionEsx,td can be expressed by means
of ]I /]x as

Esx,td = −
exps− xd

2p
E

x

` ] I

] x
dx

=
exps− xd
4Îpt3

E
x

`

expS x

2
−

t

4
−

x2

4t
Dx dx. s11d

The last integral is represented in terms of the complemen-
tary error function erfc, and finally we obtain

Esx,td =
1

2
exps− xdSexps− y2d

Îpt
+ 1 −

1

2
erfcsydD

= 1expS−
sx + td2

4t
D

2Îpt
+

1

4
exps− xderfcs− yd2 ,

s12d

wherey=Ît /2−x/ s2Îtd. Plots ofEsxd andEstd are presented
in Figs. 1 and 2 for differentt andx.

FIG. 1. The solutions12d to the dynamic self-consistent trans-
port equations in 1D, expressed as a function of dimensionless time
and for several distancesx from the source. Length units are such
that localization lengthj=1. Time units are such thatD0=1. The
behavior is similar to that observed in direct numerical simulations
f8g. Logarithms, log, are in basee for all figures.

O. I. LOBKIS AND R. L. WEAVER PHYSICAL REVIEW E71, 011112s2005d

011112-2



The expressions simplify in the asymptotic limits. For a
late time t@x the argumenty is large and positive and we
expand the complementary error function as erfcsyd
<exps−y2d /Îpy:

Est @ xd <
1

2
exps− xdS1 +

exps− y2d
Îpt

x

t
D . s13d

For t→` we recover the expected distribution of energy in
localized media Esxd< 1

2exps−xd with unit localization
length. For the opposite limit of a distant point at short time
x@ t , y is large and negative, and the complementary error
function erfcsyd=2−erfcsuyud<2−exps−y2d /Îpuyu. In classi-
cal wave systems with realistic levels of absorption, this
limit may be most accessible. After cancellation of like terms
in Eq. s12d the energy distributionE is found to be

Esx @ td < expS−
sx + td2

4t
D1 + t/x

2Îpt

=expS−
x

2
−

t

4
−

x2

4t
D1 + t/x

2Îpt
. s14d

At early times, but large distances, the behavior is not clas-
sical diffusion exps−x2/4td /Î4pt, but is diminished by a fac-
tor exps−x/2−t /4d; this is the earliest sign of localization to
manifest at large distances. It may be noted that the behavior
is not representable in terms of a time-dependent diffusivity,
but is equivalent to classical diffusion under an envelope
exps−x/2d with an effective localization length twice the ac-
tual length and an augmented absorptivity exps−t /4d.

III. UNBOUNDED TWO-DIMENSIONAL SYSTEM

The solution of Eq.s2d for the dynamic diffusion coeffi-
cientDsVd in 2D can be presented in the same manner as for
1D case:

1

DsVd
=

1

D0
+

2

s2pd2a
E

0

qmax 2pq dq

DsVdq2 + iV
, s15d

whereqmax is a cutoff wave number related to a microscopic
length lmic asqmax=1/lmic upon which a Boltzmann diffusiv-
ity D0 may be described. We obtain an implicit form for the
connection betweenD andV,

V =
iDF

1 − expfbs1 − D/D0dg
, s16d

where the quantitiesb=2pa and F=qmax
2 have been intro-

duced. In the stationary regimesV→0d the diffusion coeffi-
cientD< ij2V, wherej is the localization length. Comparing
this with Eq. s16d we find j=hfexpsbd−1g /Fj1/2. A regime
of universal behavior independent of the details of the mi-
croscale is presumably obtained in the limitj@ lmic—i.e.,
expsbd@1 andj<fexpsbd /Fg1/2. It is in this regime that we
focus further attention. The functionDsVd has two branch
points. They are on the positive imaginaryV axis and are the
solutions of the equationV8sDd=0. V1,2= iD0Fu1,2/b where
u1,1 and u2.1 are two solutions of the simple equation
u exps−ud=exps−b−1d. For the universal regime expsbd
@1 the branch points simplify:V1< iD0/ej2b and V2
< iD0F wheree=2.718… . The branch pointV2 is unimpor-
tant except on the microscale and will be ignored. We rewrite
V1 asV1< i /4t wheret=ej2b /4D0 is a characteristic time
of transport. In all further numerical calculations we will
choose length and time units such thatj=1 andt=1, thus
permitting comparison with the one-dimensional case with-
out further loss of generality.

Once again the energy distributionEsr ,td is expressed as
the inverse temporal and spatial Fourier transforms of the
function CsV ,qd as

Esr ,td =
1

s2pd3 E expsiVtddVE fsqdexpsiq · r dd2q

DsVdq2 + iV
,

s17d

where fsqd is the source function. For a point source at the
origin fsqd=1, and for a line source located along they axis
fsqd=2pdsqyd. Here we will consider further only a line
source. After calculation of the integral overqy and qx we
write

Esx,td =
i

4p
E

−`−id

+`−id expfiVt + ixÎ− iV/DsVdg
Î− iDsVdV

dV, s18d

as in Eq. s6d, except that the diffusion coefficient is now
determined by Eq.s16d, not Eq.s5d. The integrals18d can be
calculated numerically. As expected, when space and time
units are chosen as before such thatj=1 and the branch point
is at i /4, and in the limit expsbd@1, the behavior is inde-
pendent of the microphysicsb , F, and D0. The resulting
temporal and spatial distributions are presented in Figs. 3
and 4. For comparison with the 1D case, selected curves
from Figs. 1 and 2 are overlaid. In units such that the behav-
ior at late time is identicalsj=1,t=1d, transport in 2D is
substantially faster than it is in 1D.

FIG. 2. As in Fig. 1, but expressed as a function of distance for
several times. The profile may be observed to approach exps−xd /2
at late time.
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IV. INFINITE STRIP

We consider a strip of infinite length −̀,x,` but finite
width 0,y,L. It is a case intermediate between the 1D and
2D cases considered above. Periodic boundary conditions
Csx,yd=Csx,y+Ld are invoked, consistent with those em-
ployed in direct numerical simulationsf8,10g. Such boundary
conditions assure invariance in they direction and noy de-
pendence inDsVd. The solution of Eq.s2d is presented as a
sum of the solution for an unbounded 2D medium
K0sxÎiV /Dd plus additional terms corresponding to image
sourcesK0(siV /Dd1/2rn), where K0 is the modified Bessel
function andrn=Îx2+L2n2snÞ0d is the distance to thenth
image source:

Csxd =
1

2pD
K0SxÎ iV

D
D

+
1

2pD
o

n=−`,nÞ0

`

K0SÎsx2 + L2n2d
iV

D
D . s19d

The first term on right-hand side of Eq.s19d, when evaluated

at x=0, of course requires due attention to the length scale
cutoff lmic. Equations2d for the dynamic diffusion coefficient
becomes

1

DsVd
=

1

D0
+

2

s2pd2a
E

0

qmax 2pq dq

DsVdq2 + iV

+
2

2pDa
o

n=−`,nÞ0

n=`

K0SLunuÎ iV

D
D , s20d

which can be rewritten in the same form as Eq.s16d:

V =
iDF

1 − expfbs1 − D/D0d − 4o
n=1

n=`

K0sLnÎiV/Ddg

. s21d

Once again we insist that in the stationary limitsV→0d the
diffusion coefficientD< ijL

2V, wherejL is the localization
length in the strip. As the result we obtain

jL
2 =

expFb − 4o
n=1

n=`

K0sLn/jLdG − 1

F
. s22d

In the universal regimej@ lmic, equivalent to expsbd@1, the
localization lengthj2<expsbd /F and Eq.s22d may be re-
written as a relation between the localization lengthjL for
strip of width L and the localization lengthj for an un-
bounded 2D medium with the same microphysicsD0, lmic,
andb:

j = jLexpS2o
n=1

`

K0sLn/jLdD . s23d

A graph ofjL /L versusj /L from Eq.s23d is drawn in Fig. 5
as a solid line. For comparison, the results of numerical
simulations of MacKinnon and Kramerf10g are presented in
the same graph as symbols. The similarity of the curves is

FIG. 3. The solution of the dynamic self-consistent transport
equation in 2D as evaluated by numerical integration of integral
s18d. Length units are such thatj=1; time units are such, as in Figs.
1 and 2, that the branch pointVbp= i /4—i.e., t=1. One of the
curves from Fig. 1 is overlaid for comparison.

FIG. 4. The integrals18d expressed as a function of distancex at
several times.

FIG. 5. The localization lengthjL in a strip of widthL is com-
pared with that of an unbounded 2D system with the same micro-
structure. The solid line is the prediction of the self-consistent
theory, Eq.s23d. The isolated points are taken from the direct nu-
merical simulations of MacKinnon and Kramerf10g.
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encouraging. The slight differences are not explained, but are
presumably due to failure of the self-consistentsSCd model.

The transport dynamics of a strip is described by Eq.s18d
with the dynamic diffusion coefficient from Eq.s21d. Figure
6 presents theEstd dependence at distancex/j=2, and Fig. 7
presents theEsxd dependence at timet=1 for different L.
Again we have chosent=ej2b /4D0=1 so that the transport
rates in Figs. 3 and 6 may be compared. A comparison of
Fig. 6 and thex/j=2 curve of Fig. 3 shows that the transition
to stationary conditions takes place more rapidly in the strip.
For the same microphysics, the strip has a shorter localiza-
tion length and the transport timejL

2 /D0 is shorter than
j2/D0.

V. ASYMPTOTICS: COMPARISON OF THE DYNAMICS
FOR 1D AND 2D AND STRIP

The numerical integrals18d can be evaluated asymptoti-
cally, thus facilitating understanding and better allowing
comparison between the transport dynamics in the different
structures. All transport is governed by the same integral
s18d, the only difference being the differentDsVd, expressed
by Eqs.s5d, s16d, ands21d, respectively. To estimate the in-

tegral we make the substitutioniV /DsVd=p2 and rewrite
Eq. s18d as

Esx,td =
i

4p
E

Cp

expfSspdg
V8spd
ipDspd

dp

= −
i

2p
E

Cp

expfSspdgdp−
i

4p
E

Cp

expfSspdgfspddp,

s24d

where the exponentSspd= iVspdt−xp= tpDspd−xp and the
integrandfspd=pD8spd /Dspd. The three cases differ in their
Dspd dependencessgiven belowd. The integration contours
Cp in the complexp plane are mapped from the original
contour in theV planesfrom −`− id to `− idd and are pre-
sented in Fig. 8. The polep0 of the functionfspd is located at
the vertex of the integration contour on the realp axis. It
corresponds to the pointV=0 and can be calculated as a
limit of the ratio iV /DsVd for small V , p0ÎiV /DsVduV=0

=1/j sor 1/jLd. At large t and/orx the integralss24d can be
evaluated by the saddle-point method. We present the inte-
grand fspd near the polep0 as

fspd =
p0

p − p0
+ o

n=0

`

Bnsps,p0dsp − psdn, s25d

where the residue of the functionfspd=pD8spd /Dspd at the
pole p0 is equal top0 and the second term here is the regular
part of the functionfspd expanded aroundps. The saddle
point ps is a solution of the equationS8spsd=0. The coeffi-
cientsBnsps,p0d can be determined by standard procedures.
After substitution of Eq.s25d into Eq.s24d and regrouping of
the terms we rewrite it as

Esx,td = −
i

4p
E

Cp

expfSspdgS2 + o
n=0

`

Bnsps,p0dsp − psdnDdp

−
ip0

4p
E

Cp

expfSspdg
dp

p − p0
. s26d

Thus the transport dynamics is presented as a sum of two

FIG. 6. Comparison of transport dynamics atx=2 in strips of
various widthsL. Microstructural parameters are identical to those
of Figs. 3 and 4.

FIG. 7. Comparison of transport dynamics att=1 in strips of
various widthsL.

FIG. 8. The integration contoursCp are mapped from the origi-
nal contours in theV planes−`− id ,`− idd.
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terms. The first does not include any contribution from the
pole and dominates the dynamics for short times. We will
call it the diffusionlike term. The second term includes a
contribution from the pole and is dominant for late times. We
will call it the localizationlike term. Calculation of both us-
ing the residue theorem and the saddle-point method is
straightforward; the solution is

Esx,td <Î 1

2pS9spsd
S1 +

1

2
B0sps,p0dDexpfSspsdg

+
p0exps− p0xd

4
erfcfÎS9spsd/2sps − p0dg, s27d

whereS9spsd is the second derivative of the exponentSat the
saddle point and the coefficientB0sps,p0d is equal tofspsd
−p0/ sps−p0d.

The simplest form of the functionsDspd andSspd is ob-
tained in the 1D case, whereD1spd=1−1/p, the correspond-
ing exponent isS1spd= tpsp−1d−xp, and the integrand is
f1spd=1/sp−1d. Calculating the first derivative of the func-
tion S1spd we find that the saddle point for 1D is atps1

=sx+ td /2t. This is located on the realp axis. Similarly,
S1sps1d=−sx+ td2/4t andS19sps1d=2t. The asymptotic expres-
sion s27d is found to equal the exact solutions12d. Because
of the simple form of the integrandf1spd and because the
exponentS1spd is a quadratic, the asymptotic expression is
exact.

The diffusion coefficientD2spd for the unbounded 2D
case can be presented in explicit form as

D2spd =
D0

b
Fb − lnSF

p2 + 1DG . s28d

In the universal regime expsbd@1, at both pointsp of inter-
est, and for all realistic values ofx and t, the ratioF /p2 is
large. The polep0 is at 1/j and F /p0

2=sj / lmicd2@1. The
saddle point is such thatF /ps

2,sj / lmicd2sjt /xtd2@1 except
at very largex/ t. This allows Eq.s28d to be simplified,

D2spd <
2D0

b
lnspjd =

ej2

2t
lnspjd, s29d

now expressed in terms of macroscopic parameters. The ex-
ponent for the 2D case isS2spd<ej2tp2lnspjd /2t−xp and
the corresponding equation for the saddle pointps2 is

ps2f2 lnsps2jd + 1g − b = 0, s30d

where b=2xt /ej2t. The exponent at the saddle point is
S2sps2d<−ej2tps2

2 /4t−xps2/2 and its second derivative
S29sps2d=ej2tf3+2 lnsps2jdg /2t. The coefficients B0sps2

Þj−1d=ln−1sps2jd−sps2j−1d−1 and B0sps2=j−1d=1/2.
Graphs ofEsxd for 2D unbounded media are presented in
Fig. 9 for different t where the exact solutions of integral
s18d are solid lines and the asymptotic solutionss27d are
dashed lines. Except at shortx, the asymptotic expression is
highly accurate. Figure 10 presentsEstd for x/j=1 andx/j
=2. The maximum relative difference between exact and ap-
proximate curves occurs at smaller distances and is 10%–
20%. For 2D unbounded media the approximations27d de-

scribes the transport dynamics well for all distances greater
than the localization lengthj.

The diffusion coefficientDLspd for a strip can be also
presented in explicit form in the complexp plane:

DLspd =
D0

b
Fb − lnSF

p2 + 1D − 4o
n=1

`

K0sLnpdG
<

ej2

2t
Slnspjd − 2o

n=1

`

K0sLnpdD . s31d

The structure of the exponent functionSL for a strip can be
considered in the same manner as for the 2D case and we
find SLspd=ej2tp2flnspjd−2on=1

` K0sLnpdg /2t−xp. The
saddle point in the limitF /psL

2 @1 is the solution of

psLS2 lnspsLjd + 1 − 4o
n=1

`

K0sLnpsLd + 2o
n=1

`

LnpsLK1sLnpsLdD
− b = 0, s32d

and the transport dynamics can be easy calculated for a strip
of arbitrary widthL using Eqs.s27d, s31d, ands32d.

FIG. 9. Comparison of the exactssolid linesd and asymptotic
sdashed linesd spatial dependence of transport dynamics in 2D.

FIG. 10. Comparison of the exactssolid linesd and asymptotic
sdashed linesd temporal dependence of transport dynamics in 2D.
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VI. COMPARISON WITH NUMERICAL SIMULATION
OF TRANSPORT

Direct numerical simulationsf7,8g have emphasized a
striking apparent collapse of transport data to a phenomeno-
logical form exps−x/jdexpf−sxn+2/4Deffj

ntdgg over a sub-
stantial dynamic range for allx.2j andt,x. In 1D Weaver
and Burkhardtf8g studied a strip with periodic lateral bound-
ary conditions in the parametric regime mean free path
!width! localization length. The system was thus quasi 1D.
They foundn=0 and g=1. In 2D Weaverf7g studied the
same sort of structure, but in the limit mean free path
! localization length!width. The system was thus 2D. He
found n<0.46 andg<0.76. This precise form is not con-
firmed by the current calculations. Nevertheless, when the
exact or asymptotic expressions are plotted in Figs. 11 and
12 in the manner suggested byf7,8g we see that these forms
are well supported by the present theory for allx.2j and
E.e−10. Thus the SC theory of transit dynamics is consistent
with these direct numerical simulations.

In an attempt to find a theoretical basis for these expo-
nents we note that the main features of transport atx. t are

determined by thex and t dependences of the exponentS at
the saddle pointps in the first term of Eq.s27d. In general,
the exponentSspsd can be presented as the sum of three
terms. It contains two terms linear inx and t which describe
an additional diminishing of energy because of localization,
plus a diffusionlike termSDspsd,−x1+g / tg, where the param-
eterg depends on the geometry of the problem. Forx. t this
term is dominant and we can investigate the scaling of the
transport of localizing waves based only on thex and t de-
pendences of the functionSD.

For the 1D case where an explicit form of the exponent is
possible, S1sps1d=−sx+ td2/4t=−t /4−x/2−x2/4t and
S1

Dsps1d=−x2/4t in accordance with the numerical calcula-
tions of Weaver and Burkhardtf8g. For the 2D case the ex-
ponent can be presented only in implicit form but linear
terms over t and x can be separated andS2sps2d=−t /4t
−x/jÎe+S2

Dsps2d. Because of the logarithmic dependence of
the saddle point for 2D media,SDspsd,−x1+g / tg cannot be
described by constantg for all x and t. Estimation of the
diffusionlike term S2

D shows that for short distance or late
time x, t si.e., near the stationary regimed, scaling is close to
that of classical diffusion:S2

Dsps2d,−x2/ t. For the opposite

FIG. 11. The predictions for transport dynamics in 1D are plot-
ted versusx2/ t. A phenomenological form exps−x−x2/4Defftd ap-
proximately fits the data.

FIG. 12. Transport dynamics in 2D approximately fits the phe-
nomenological form expf−x−sx2+n/Deffj

ntdgg with g=0.8 andn
=0.25.

FIG. 13. The slope of the exponentSDspsd versus logt for 1D
and 2D and strips of different widthsL is close to −1, except in 2D
where it varies but has a value near −0.8.

FIG. 14. The slope of the exponentSDspsd versus logx for 1D
and 2D and strips of different widthsL is close to +2 except in 2D
where it varies but has a value close to 1.8.
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limit x. t, far from stationary regime and arguably the more
relevant for experiments, we have approximatelyS2

Dsps2d
,−x1.8/ t0.8, close to the phenomenological observations of
Weaverf7g. This is illustrated in Figs. 13 and 14. The slopes
of the log-log plots are such that a dependencex2/ t is appar-
ent in 1D. The slope in the 2D case varies slowly withx and
t, but is close tox1.8/ t0.8 over a substantial range inx and t.

It is clear that forL /j.1 the strip localization length
jL<j and the values of the sums in Eq.s32d are small. As a
result, Eq.s32d transforms to Eq.s30d and we find the same
dynamics for the strip as for an infinite 2D medium. For the
opposite caseL /j,1 we find the same dependence as in 1D
wherepsL,const+x/ t andSL

DspsLd,−x2/ t. The x and t de-
pendences of the functionSDspsd for 1D and 2D and a strip
are presented in Figs. 13 and 14.

VII. CONCLUSIONS

Integral expressions for dynamic transport of Anderson
localized waves have been derived with the self-consistent
theory of localization. In 1D they are evaluated in closed
form; in 2D and in a strip geometry, they require numerical
or asymptotic evaluation. Early-time behavior is found to
differ subtly but significantly from the common presumption
of classical diffusion. We find that the theory does a good job
of reproducing key features observed in direct numerical
simulations.
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