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Self-consistent transport dynamics for localized waves
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We find that the Vollhardt and Wolfle self-consistent theory of Anderson localization makes simple predic-
tions for transport dynamics in unbounded one- and two-dimensional media. These predictions are derived and
explored and compared with direct numerical simulations.
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I. INTRODUCTION which the equations simplify. We find a closed-form expres-

While the steady-state intensity of waves in the Anderson>'°" describing the transport in one-dimensiofieD) sys-

localized regime has been studied extensively for many yeari% m: a;nd dSIirr?paIl?] Iztr?lggiln%xe%resstsr :onjv;‘tohr trz?iz%ci)crt Ibnoﬁg dSaXS_
[1-3], there has been relatively little attention paid to its P P y

dynamics. At moderate distancefrom a steady-state source :;?[?e(jr'tglsiscgze% L?]rdmtssgéngtféfr;%pr?ﬁ??;fur}fsfgrréhgéren-
in an unbounded medium, with comparable to or larger ared to those of numerical simulation.s in the literature
than a localization lengthé, standard theory predicts a P :

. . . We consider the self-consistent theory of Anderson local-
steady-state diffuse profile of the mean-square wave ampli- . R
tude (“energy”) that varies as expx/&). This exponential ization from[14,15, where the diffusivityD({2) has a de-

dependence is the prime signature of localization. At Iargé)fe?hdeep:: gﬁ%ﬁigﬂfﬁf}ggﬁ;;ﬁi z?l\fvr;,retf:;fongt
distances from a source, transport is effectively zero. Henc P P gy

follows the conclusion, valid in the thermodynamic limit, € origin is given by the solution to
that diffusion is zero in localizing systems and the under- _ 2, —
standing that the Anderson localization of single-electron [-DEO)VZ+IQIC(Q.D.1) = &r). @)
wave functions is a critical part of the metal-insulator tran-The dynamic diffusivityD(€) is given as the solution of
sition in disordered conductofg].

Classical wave systend,5] are understood to localize as 1 1 2
well; there is no essential difference between the wave equa- D) =o." —C(Q,D,r=0), 2
tion for noninteracting electrons and that for electromagnetic o @

or acoustic waves. The most significant differences are pra%hereDO is the Boltzmann diffusivity, the effective diffusion

tical. One such is due to absorption: observation of an exposx ; ;
i . . ~FConstant on a bare microphysical length scale comparable to
nential steady state epx/L) does not permit the identifi- Py g P

. X the mean free path. The parameteis related to the modal
cation L=¢ Many measurements are restricted 10gensity. Equationgl) and(2) are coupled. Equatiof?) de-
boundariesx dependence is not available for study. In clas-gerines how the diffusivity is renormalized by the backscat-
sical wave systems the prime signature of localization iSereq intensityC(r=0). Implicit in Eq. (2) is the familiar
probably more clear in transport dynamics than it is inyqion that localization is an extrapolation from weak local-
steady-state transmissi¢8]. ization. That this is strictly speaking incorrect may be recog-

ITheory f?r the 'dyn?rr;lcsl of nge Fnergy transportl in IO'nized by considering the case of broken time-reversal invari-
calizing systems IS reialively undeveloped, numerical SiMuynea \where there is no weak localization, but modes are

lations[6—11] not withstanding. It is widely presumed that, localized. Nevertheless, the theory has enjoyed some
for sufficiently early times and short distancésg., Ref. success. '

[12]), transport away from an impulsive plane source can be In the next three sections we present solutions of EQs.
a.pproximated by CIaSSigal diﬁusM{h a Boltzmann d.iffu- and (2) in three different systems: in unbounded one- and
sivity Do:  E~ exp(-x"/4Dqt)/\4mDot. The manner in ., dimensional structures and an in infinite strip of witith
which this spreading Gaussian evolves at late time Bto it periodic lateral boundary conditions that is intermediate
~ exp(-x/¢) is unclear. Recently Cheunet al. [13] and  penveen one dimension and two dimensions and has been
Skipetrov and van Tiggeleil4] have applied the self- g died numerically elsewhere. In all cases we then obtain
consistent theory of Anderson localizatiptb] to the prob-  the corresponding prediction for the quasi-1D response
lem of predicting transport dynamics in quasi-one-g(x ), the response to an impulsive addition of wave energy
dimensional semi-infinite structures. Here we report any 4|l pointsx=0. E(x,t) is given in terms of an integral that

application of the same theory to unbounded systems, 0% o\ aiuated numerically. In Sec. V, this integral is found to

be accurately approximated at all points>¢ by an
asymptotic expression. We emphasize the parameter regime
*Corresponding author. FAX: 217-244-5707. Electronic addressmost relevant to transport in classical wave localized sys-
r-weaver@uiuc.edu tems, distances of order 1 to several localization lengths, and
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modest time scales. The results are compared with certain 07 1o gE() x=0.5
features observed in large-scale direct numerical simulations.

Il. UNBOUNDED ONE-DIMENSIONAL SYSTEM

For an unbounded 1D system the functiGfr) can be
calculated by taking the Fourier transform over the wave
number q of both sides of Eq.(1). The result isC(q)
=[D(Q)g?+iQ]? and the dynamic diffusion coefficient
D(Q) is expressed from Ed2) as

1 1 2 f** dqg
D(Q)_DO 2ma

-10

3 20 *x=1 t
- DQ)?+iQ’ & T

0.01 0.1 1 10

Without loss of generality we choose length and time units
such thaDy=a=1. The integral in Eq(3) can be calculated FIG. 1. The solution12) to the dynamic self-consistent trans-
simply from the pole atj=+-iQ/D({2) and we rewrite Eq. Port equations in 1D, expressed as a function of dimensionless time

(3) as and for several distancesfrom the source. Length units are such
that localization lengtié=1. Time units are such th&@,=1. The
D(Q) behavior is similar to that observed in direct numerical simulations
D) =1~ 0’ (4) [8]. Logarithms, log, are in basefor all figures.

which has the solution Il % t)[* o o
—_— —=- exy{— - —)f exp(— x\Q/2)cog Ot — x\Q/2)d().
1+40-1 o ox 2 4],

V1+40+1 (9)

1 —
DQ:1+_1—J’1+4iQ:
Q) gL )

Dynamic transporE(x, t) is expressed as the inverse tem-ry,. o prin tion = 2<2 simplifies the integral and we find
poral and spatial Fourier transforms of the functiGnin ([16], p. 459

(Q,9) spaceC(2,q)=[D(Q)g?+iQ]™

_ 1 - " _expligx)dg ar_ -4 exp(z—l)fm exp(— x9)cog2ts? — x9)s ds
E(x,t)—‘szexpﬂﬂt)dﬂf_00 D)+ i0) Ix 2 4],
| - 2
i [ exgiOt+ixy=iQ/DQ)] __ X [m p(i_l_x_)
- : dQ, 6 = 3(EX . (10)
At V-iD(Q)Q (6) 2Vt 2 4 4t

where the integration path ovél is located in the lower The energy distributiof(x,t) can be expressed by means

complex half-plane. We have taker 0 without loss of gen-  Of d1/9x @s
erality, asE(x) =E(—x). Using the solution5) for D({}) the "
integral (6) for energy can be rewritten as E(x,t) = - exz(_ dx
o
expi-x) 18 exl[iQt - x(\yl +4iQ - 1)/2] *
E(x,t) = Q, exp(— x)
2 —oomis V1+4Q-1 = f ——— xdx (11
4\!’71{3 2 4 4t

(7

with an arbitrarys>0. The integrand in Eq7) has a simple ~ The last integral is represented in terms of the complemen-
pole atQ)=0 and a branch point &=i/4. The pole governs tary error function erfc, and finally we obtain
the late-time behavioE(x,t=«)=exp—-x)/2. The integral

(7) can be calculated analytically in the following manner. _4 ex D( y9) _}
Writing E(x,t) =exp(-x)I(x,t)/ 2, we find ExD = exp( X) it *1 zerfc(y)
gl x/2) (10 R t
i eXp( xp(im—f\uumﬂ)dﬂ. ®) p( (x+ ) )
o7x s 2

—+ exp( x)erfc(-y) |,

The pole at)=0 has been eliminated. We deform the inte- 2\t

gration path from the lower to upper complex half-plane un- (12
til A=i/4. After the substitutiof) — () +i/4 and transforma- _ _

tion of the integration path only over positive re@l we  wherey=\t/2-x/(2vt). Plots ofE(x) andE(t) are presented
rewrite it as in Figs. 1 and 2 for different andx.
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0 -, logE(x) 1 1 2 max  2.q d
f 7q dq (15)

1
D(Q) Dy (2m2al, DQ)g?+iQ’

whereqay IS @ cutoff wave number related to a microscopic
lengthl ic @S 0max=21/Imic Upon which a Boltzmann diffusiv-
ity Dy may be described. We obtain an implicit form for the
connection betweeb and (),

-20 | iDO®
Q= , 16
1-exdB(1-D/Dy)] (16)
where the quantitieg@=2ma and ®=q?, have been intro-
30 duced. In the stationary regini€) — 0) the diffusion coeffi-

cientD =i £%Q), where¢ is the localization length. Comparing

this with Eq. (16) we find é={[exp(B)—1]/ D} A regime

'of universal behavior independent of the details of the mi-

croscale is presumably obtained in the lingie |1, ,;—i.e.,

exp(B)>1 andé=[exp(B)/P]V2. It is in this regime that we

. S S focus further attention. The functioR({2) has two branch
The expressions simplify in the asymptotic limits. For apgints. They are on the positive imaginddyaxis and are the

late timet>x the argumeny is large and positive and we gq|utions of the equatiof’ (D)=0. 0, ,=iD U, ,/ B where

expand Zth?_ complementary error function as @¥fc , <1 andu,>1 are two solutions of the simple equation
~exp-y)/\my: uexp(-u)=exp(-B-1). For the universal regime eg)
>1 the branch points simplify);~iDy/e&B8 and Q,

FIG. 2. As in Fig. 1, but expressed as a function of distance fo
several times. The profile may be observed to approackrexf?
at late time.

1 exp(- y?) x ~iDy® wheree=2.718.. . The branch poinf), is unimpor-
E(t>x) ~ Eexp(— X)(l * Vﬁ t) (13) tant except on the microscale and will be ignored. We rewrite

O, asQ, ~i/4r where r=e£?/4D, is a characteristic time
of transport. In all further numerical calculations we will
choose length and time units such tlatl and =1, thus
permitting comparison with the one-dimensional case with-
PUt further loss of generality.

For t— o« we recover the expected distribution of energy in
localized media E(x) = %exp(—x) with unit localization
length. For the opposite limit of a distant point at short time

x>t, y is large and negative, and the complementary erro Once again the energy distributifr ,t) is expressed as

i =2- ~2-expg-y2) /\aly|. i- . : ;
function erfey)=2 erfc(|y|) 2 _exp( y*)/\alyl. In leaSS' . the inverse temporal and spatial Fourier transforms of the
cal wave systems with realistic levels of absorption, this

limit may be most accessible. After cancellation of like termsfunCtlon Cl@.q as

in Eq. (12) the energy distributioft is found to be f(q)exp(iq - r)d%q

1 .
E(r,t):(zT)g)feprQt)de DO)F+I0

E(x>1t) = exp( M) 1+Ux (17)
4t 2\t
wheref(q) is the source function. For a point source at the
5 origin f(g)=1, and for a line source located along thaxis
=ex;<— x t- x_>1+1x (14) f(q)=2md&(qy). Here we will consider further only a line
2 4 4t) o\mt’ source. After calculation of the integral ovey and g, we
write
At early times, but large distances, the behavior is not clas- toonis . T Y=Y
sical diffusion exjg—x?/4t)/\4mt, but is diminished by a fac- E(x,t) = '—f XN Xy 'Q/D(Q)]dg, (18)
tor exp(—x/2-t/4); this is the earliest sign of localization to A ) _is V=iD(Q)Q

manifest at large distances. It may be noted that the behaw%rS in Eq.(6), except that the diffusion coefficient is now

is not representable in terms of a time-dependent diffusivity . :
but is equivalent to classical diffusion under an envelopede'[e”mne‘j by Eq16), not Eq.(5). The integral18) can be

exp(—x/2) with an effective localization length twice the ac- calculated numerically. As expected, when space and time

L units are chosen as before such t#af and the branch point
tual length and an augmented absorptivity @p4). is ati/4, and in the limit expd)> 1, the behavior is inde-

pendent of the microphysicg, ®, and D,. The resulting

II. UNBOUNDED TWO-DIMENSIONAL SYSTEM temporal and spatial distributions are presented in Figs. 3
and 4. For comparison with the 1D case, selected curves
The solution of Eq(2) for the dynamic diffusion coeffi- from Figs. 1 and 2 are overlaid. In units such that the behav-
cientD(Q)) in 2D can be presented in the same manner as foior at late time is identical¢é=1,7=1), transport in 2D is
1D case: substantially faster than it is in 1D.
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FIG. 3. The solution of the dynamic self-consistent transport FIG. 5. The localization lengtl, in a strip of widthL is com-
equation in 2D as evaluated by numerical integration of integrapared with that of an unbounded 2D system with the same micro-
(18). Length units are such thgt1; time units are such, as in Figs. structure. The solid line is the prediction of the self-consistent
1 and 2, that the branch poi,,=i/4—i.e., 7=1. One of the theory, Eq.(23). The isolated points are taken from the direct nu-
curves from Fig. 1 is overlaid for comparison. merical simulations of MacKinnon and KramjgirO].

V. INFINITE STRIP at x=0, of course requires due attention to the length scale

We consider a strip of infinite lengthee<x<<oc but finite  cutoff | ;.. Equation(2) for the dynamic diffusion coefficient
width O<y<L. Itis a case intermediate between the 1D andbecomes
2D cases considered above. Periodic boundary conditions

C(x,y)=C(x,y+L) are invoked, consistent with those em- 21 1.2 fq"‘ax 2mq dq

ployed in direct numerical simulatio8,10]. Such boundary D(Q) Dy (2m2al, DG +iQ
conditions assure invariance in tlgedirection and noy de- e :

pendence iD()). The solution of Eq(2) is presented as a + 2 S K <L|n| \/@) (20)
sum of the solution for an unbounded 2D medium 2mDa -5 n0 0 D/’

Ko(x\iQ2/D) plus additional terms corresponding to image ) )
sourcesKo((iQ/D)Y?r,)), whereK, is the modified Bessel Which can be rewritten in the same form as Ef):

function andr,=yx?+L°n’(n#0) is the distance to thath iD®
image source: Q0= = . (21
1 i0 1-exgB(1-D/Dy) - 4, Ko(LniQ/D)]
C(x) = —=Kpl x\/ — n=1
2wD D

o . Once again we insist that in the stationary lirffit — 0) the
+ 1 s Ko( /(X2+LGz)ﬂ>_ (19) diffusion coeffic_ientDzigfﬂ, where ¢ is the localization
27D = Zon0 D length in the strip. As the result we obtain

The first term on right-hand side of E(L.9), when evaluated =
exp| B-42, Ko(Ln/g) | -1
0 logE(x) 2

n=1

&= oy . (22)
In the universal regimé> |, equivalent to ex{B)>1, the
localization length&?~exp(8)/® and Eq.(22) may be re-
written as a relation between the localization lengthfor
strip of width L and the localization lengtly for an un-
bounded 2D medium with the same microphydis |mic
and g:

=10 -

=20 -

¢= §Lexp(22 Ko<Ln/§L)). (23
n=1

A graph of§ /L versusé/L from Eq.(23) is drawn in Fig. 5

as a solid line. For comparison, the results of numerical
FIG. 4. The integra(18) expressed as a function of distancat ~ Simulations of MacKinnon and KramgtO] are presented in

several times. the same graph as symbols. The similarity of the curves is

0 5
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FIG. 6. Comparison of transport dynamicsxat2 in strips of
various widthsL. Microstructural parameters are identical to those
of Figs. 3 and 4.

FIG. 8. The integration contoufs, are mapped from the origi-
nal contours in the) plane(-<=ig,°-id).

rE(,agral we make the substitutioif)/D(Q)=p? and rewrite

encouraging. The slight differences are not explained, but a
Eq. (18) as

presumably due to failure of the self-consist€®€) model.

The transport dynamics of a strip is described by @§) i Q'(p)
with the dynamic diffusion coefficient from E21). Figure E(x,t) = 4—J eXF{S(p)]TdD
6 presents th&(t) dependence at distangéé=2, and Fig. 7 Ty ipD(p)

presents theéE(x) dependence at time=1 for differentL. i i
Again we have chosen=e&?3/4D,=1 so that the transport == Z_J exd S(p)]Jdp- 4—J exd S(p)]f(p)dp,
. . . a C a C
rates in Figs. 3 and 6 may be compared. A comparison of P P
Fig. 6 and thex/ é&=2 curve of Fig. 3 shows that the transition (24)

to stationary conditions takes place more rapidly in the strip, . o B
For the same microphysics, the strip has a shorter Iocaliza\lNhere the exponen§(p) =i{)(p)t=xp=tpD(p) ~xp and the

. . . |f1tegrandf(p):pD’(p)/D(p). The three cases differ in their
tég/nDIength and the transport timéf/Do is shorter than D(p) dependencegfgiven below. The integration contours
o C, in the complexp plane are mapped from the original

contour in the() plane(from —©—i§ to i) and are pre-
V. ASYMPTOTICS: COMPARISON OF THE DYNAMICS sented in Fig. 8. The pole, of the functionf(p) is located at

FOR 1D AND 2D AND STRIP the vertex of the integration contour on the rgabxis. It

The numerical integral18) can be evaluated asymptoti- corresponds to the poif2=0 and can be Md as a
cally, thus facilitating understanding and better allowing!imit of the ratio i€2/D(Q) for small €, po\i€2/D(Q)|a=
comparison between the transport dynamics in the differen1/£ (or 1/¢,). At larget and/orx the integrals(24) can be
structures. All transport is governed by the same integragvaluated by the saddle-point method. We present the inte-
(18), the only difference being the differeBx()), expressed grandf(p) near the poley, as
by Egs.(5), (16), and(21), respectively. To estimate the in-

?O + 2 Bo(ps o) (p— po)", (25)
p 0 n=0

f(p) =
0\ logE(x)
where the residue of the functidiip)=pD’(p)/D(p) at the
pole py is equal topg and the second term here is the regular
part of the functionf(p) expanded aroungs. The saddle
point ps is a solution of the equatio8'(ps)=0. The coeffi-
cientsB,(ps, po) can be determined by standard procedures.
After substitution of Eq(25) into Eq.(24) and regrouping of
the terms we rewrite it as

-10

E(x,t)=- jJC eXp[S(p)](Z + EO Bn(Ps,Po) (P — ps)”>dp
p n=

iPo dp
" eXF{S(p)]H- (26)
FIG. 7. Comparison of transport dynamicstatl in strips of Cp 0
various widthsL. Thus the transport dynamics is presented as a sum of two
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terms. The first does not include any contribution from the 0 logE®X)
pole and dominates the dynamics for short times. We will

call it the diffusionlike term. The second term includes a
contribution from the pole and is dominant for late times. We

will call it the localizationlike term. Calculation of both us-

ing the residue theorem and the saddle-point method is 5
straightforward; the solution is

[ 1 1 1 =
E(xt) = 2725 (pY (1 + EBo(ps: po))exp[S(ps)]

t=1
PoeXP=PX) . - s 107
+ o et VS (pd/2(ps— po)l, (27) =05
T | T | T I T
whereS'(py) is the second derivative of the expon&t the 0 2 4 6 *

saddle point and the coefficieBy(ps, po) is equal tof(py) FIG. 9. Comparison of the exacsolid lineg and asymptotic

~Po/ (Ps~ Po)- _ _ (dashed linesspatial dependence of transport dynamics in 2D.
The simplest form of the function®(p) and S(p) is ob-

tained in the 1D case, whel (p)=1-1/p, the correspond-
ing exponent isS;(p)=tp(p—1)—-xp, and the integrand is
f1(p)=1/(p-1). Calculating the first derivative of the func-
tion S;(p) we find that the saddle point for 1D is aty
=(x+t)/2t. This is located on the regb axis. Similarly,

scribes the transport dynamics well for all distances greater
than the localization length.

The diffusion coefficientD (p) for a strip can be also
presented in explicit form in the complgxplane:

Si(ps) =—(x+1t)?/4t and S](pg)=2t. The asymptotic expres- D d *

sion (27) is found to equal the exact solutigf?). Because Du(p)=—| B- |n(_2 + 1) - 42 Ky(Lnp)

of the simple form of the integrané(p) and because the B P n=1

exponentS;(p) is a quadratic, the asymptotic expression is e *

exact. ~ —(ln(pg) -2> Ko(an)). (31)
The diffusion coefficientD,(p) for the unbounded 2D 2t n=1

case can be presented in explicit form as The structure of the exponent functi& for a strip can be

o considered in the same manner as for the 2D case and we
B=In{ = +1]1. (28 find S (p)=e&tp?In(pé) - 25, Ko(Lnp)]/27=xp.  The
saddle point in the IimitID/ng>1 is the solution of

D
Da(p) = EO
In the universal regime exp)> 1, at both pointg of inter-
est, and for all realistic values of andt, the ratio®/p? is
large. The polep, is at 1/ and <D/p§:(§/lmia2> 1. The Pst

2In(ps &) + 1 - 4> Ko(Lnpg) + 2 ansLKl(ansL))
saddle point is such thab/p2~ (¢/1,0)%(£t/xn)?> 1 except

n=1 n=1

at very largex/t. This allows Eq.(28) to be simplified, -b=0, (32
D,(p) = &)In(pg) - e_‘fzm(pg), (29) and the transport dynamics can be easy calculated for a strip
27 of arbitrary widthL using Egs(27), (31), and(32).
now expressed in terms of macroscopic parameters. The ex- .
ponent for the 2D case iS,(p) = e&tp?n(pé)/27-xp and logE(t) x=1
the corresponding equation for the saddle ppiptis 2]
Po[2 In(pet) + 1] -b=0, (30) o =

where b=2x7/e&t. The exponent at the saddle point is i
Si(pe) = —etpZ,/47-xpy/2 and its second derivative
Si(pe)=€€1[3+2 In(p€)]/27.  The  coefficients By(pg
# D= pud) - (poé-D'  and  Bype=¢h=1/2.
Graphs ofE(x) for 2D unbounded media are presented in S
Fig. 9 for differentt where the exact solutions of integral 1
(18) are solid lines and the asymptotic solutiof®%7) are 10 -
dashed lines. Except at shogtthe asymptotic expression is t
highly accurate. Figure 10 preserié) for x/é=1 andx/é¢ 0.01 o 0'1 s 1' n 1'0 n
=2. The maximum relative difference between exact and ap-

proximate curves occurs at smaller distances and is 10%— FIG. 10. Comparison of the exattolid lineg and asymptotic
20%. For 2D unbounded media the approximati@id) de-  (dashed linestemporal dependence of transport dynamics in 2D.
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09 2D
L=2
/\-2 n
b =) L=1
=2 T
+ P
i L=0.5
e
g 5
g g
3 1=0.1
1D
log(t)
-12 . | . | . | : | : |
0 20 40 2 0 2

x2/t

FIG. 13. The slope of the expone&®(py) versus log for 1D
and 2D and strips of different widthsis close to -1, except in 2D
where it varies but has a value near —0.8.

FIG. 11. The predictions for transport dynamics in 1D are plot-
ted versusé/t. A phenomenological form expx—x2/4Dgt) ap-
proximately fits the data.

determined by th& andt dependences of the exponéhat
the saddle poinps in the first term of Eq(27). In general,
the exponentS(py) can be presented as the sum of three
Direct numerical simulation$7,8] have emphasized a terms. It contains two terms linear inandt which describe
striking apparent collapse of transport data to a phenomen@n additional diminishing of energy because of localization,
logical form exg—x/&)exd—(x""2/4Dq£M)?] over a sub-  plus a diffusionlike tern&°(py) ~ -x1*?/t?, where the param-
stantial dynamic range for ai>2¢& andt<x. In 1D Weaver etery depends on the geometry of the problem. ¥oit this
and Burkhard{8] studied a strip with periodic lateral bound- term is dominant and we can investigate the scaling of the
ary conditions in the parametric regime mean free patiransport of localizing waves based only on thandt de-
<width<localization length. The system was thus quasi 1D.pendences of the functiod’.
They foundn=0 and y=1. In 2D Weaver{7] studied the For the 1D case where an explicit form of the exponent is
same sort of structure, but in the limit mean free pathpossible,  Sy(ps)=—(x+1)?/4t=—t/4-x/2-x?/4t and
<localization lengtke width. The system was thus 2D. He SP(pg)=-x?/4t in accordance with the numerical calcula-
found n=0.46 andy=0.76. This precise form is not con- tions of Weaver and Burkhard8]. For the 2D case the ex-
firmed by the current calculations. Nevertheless, when th@onent can be presented only in implicit form but linear
exact or asymptotic expressions are plotted in Figs. 11 anterms overt and x can be separated an8(psy)=-t/47
12 in the manner suggested B8] we see that these forms —x/¢\e+SD(ps,). Because of the logarithmic dependence of
are well supported by the present theory forxah2¢ and  the saddle point for 2D medi&(py) ~—-x1*/t” cannot be
E>e™ Thus the SC theory of transit dynamics is consisteniescribed by constang for all x andt. Estimation of the
with these direct numerical simulations. diffusionlike term S} shows that for short distance or late
In an attempt to find a theoretical basis for these expotimex<t (i.e., near the stationary regimecaling is close to
nents we note that the main features of transportat are  nat of classical diffusionS3(pe) ~ -x2/t. For the opposite

VI. COMPARISON WITH NUMERICAL SIMULATION
OF TRANSPORT

0 _

2D
2 1=
O o
g g
+ (‘Il L=1
c\ ~~
5 £ |vos
[=) o0
- =2
_3_
L=0.1
1D
T T T T T . | . | . lclyg(x)
¢ B aspes ¥ -2 0 2

FIG. 12. Transport dynamics in 2D approximately fits the phe- FIG. 14. The slope of the expone®t(p,) versus log for 1D
nomenological form expx—(x?""/Des#£")?] with y=0.8 andn and 2D and strips of different widtHsis close to +2 except in 2D
=0.25. where it varies but has a value close to 1.8.
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limit x>t, far from stationary regime and arguably the more VIl. CONCLUSIONS

reIeviag tof;) r experiments, we have apprommat%(psz) Integral expressions for dynamic transport of Anderson
~—x*/t"%, close to the phenomenological observations Ofjo ajized waves have been derived with the self-consistent
Weaver[7]. This is illustrated in Figs. 13 and 14._The S|°pestheory of localization. In 1D they are evaluated in closed
of the log-log plots are such that a depgndex?de IS.appar-  form; in 2D and in a strip geometry, they require numerical
entin 1D. The slope in the 2D case varies slowly withnd  or asymptotic evaluation. Early-time behavior is found to
t, but is close tac#/t%® over a substantial range inandt. differ subtly but significantly from the common presumption
It is clear that forL/§>1 the strip localization length of classical diffusion. We find that the theory does a good job
& ~ ¢ and the values of the sums in E§2) are small. As a  of reproducing key features observed in direct numerical
result, Eq.(32) transforms to Eq(30) and we find the same simulations.
dynamics for the strip as for an infinite 2D medium. For the

opposite case/ &< 1 we find the same dependence as in 1D ACKNOWLEDGMENTS
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